

 # This next line is the interrupt
 GPIO.add_event_detect(11, GPIO.FALLING, callback=switch_closed, bouncetime=300)

 while True:
 time.sleep(10)

In the switch_closed(channel) function, we define what we want to happen when a switch
close is detected. Then we use the GPIO.add_event_detect() function to look for a falling edge,
with a bounce time of 300 milliseconds. (A falling edge is what happens when a signal that was
high goes low; similarly, when a formerly low signal goes high, it’s a rising edge.) When the main
loop is started (all it does is wait, in this simple demo script), it waits for a falling edge to be
detected on GPIO 17, at which point it calls the callback function.

The debounce and the interrupt are both handy tools for your robotic toolkit. Keep this code
handy in your rover folder.

Motion Sensor

The motion sensor I use in my projects, the Parallax RB-Plx-75, works by sensing changes in the
infrared “background” of its field of view (Figure 10-5).

Figure 10-5. IR motion sensor

Changes in the infrared signature cause the sensor to output a HIGH signal on its output pin.
It’s not so much a motion sensor or an IR sensor as it is a combination of the two. Like the

115Chapter 10

Motion Sensor

magnetic sensor, it’s really nothing more than a fancy switch, so connecting and program-
ming it is quite simple.

It has three pins: Vcc, GND, and Output. Looking at the sensor from the point of view of
Figure 10-5, the pins are OUT, (+), and (-). It can use any input voltage from 3V to 6V, so
connect the GND pin to the Pi’s GND, the Vcc to either 3.3V or 5V, and the OUT pin to pin
11 (GPIO 17) for this example. To test our code, let’s connect an LED to signal if the sensor
is tripped. Connect pin 13 (GPIO 27) to a resistor, and then connect the positive lead of an
LED to the resistor’s other leg. Finally, connect the LED’s negative lead to GND on your Pi.
You should now be ready to try the following script:

 import RPi.GPIO as GPIO
 import time

 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BOARD)

 GPIO.setup(11, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 GPIO.setup(13, GPIO.OUT)

 while True:
 if GPIO.input (11):
 GPIO.output (13, 1)
 else:
 GPIO.output (13, 0)

That’s it! When you run the script (remember to use sudo, because you’re accessing the
GPIO pins), you should see the LED light when you move your hand around the sensor,
and then go out again when there is no movement for a few seconds. Keep this code in
your main rover folder.

When working with LEDs, you should always use an inline resistor to limit
the current passing through the LED. It’s very easy to burn out an LED, and
using a resistor is an excellent habit to get into. Many LED resistor calculators
are available online if you aren’t sure what value of resistor to use; I like the
one at http://ledz.com/?p=zz.led.resistor.calculator.

I2C Sensors

I2C, also referred to as I-squared-C or Inter-Integrated Circuit, has been called the serial
protocol on steroids. It allows a large number of connected devices to communicate on a
circuit, or bus, using only three wires: a data line, a clock line, and a ground line. One machine
on the bus serves as the master, and the other devices are referred to as slaves. Each device
is called a node, and each slave node has a 7-bit address, such as 0x77 or 0x43. When the
master node needs to communicate with a particular slave node, it transmits a start bit,
followed by the slave’s address, on the data (SDA) line. The slave sees its address come

116 Make a Raspberry Pi–Controlled Robot

I2C Sensors

across the data line and responds with an acknowledgment, while the other slaves go back to
waiting to be called on. The master and slave then communicate with each other, using the
clock line (SCL) to synchronize their communications, until all messages have been transmitted.

The Raspberry Pi has two GPIO pins, 3 and 5, that are preconfigured as the I2C protocol’s SDA
(data) and SCL (clock) pins. Any sensor that uses the I2C protocol can be connected to these
pins to easily communicate with the Pi, which serves as the master node. If you end up using
more than one I2C sensor on your rover, you may find it helpful to add another small breadboard
to the rover, with the two power rails running down the side of the board being used for the
data and clock lines rather than power.

To use the I2C protocol on the Pi, you first need to enable it by editing a few system files. Start
with sudo nano /etc/modules and add the following lines to the end of the file:

i2c-bcm2708
i2c-dev

Next, install the I2C utilities with the following:

sudo apt-get install python-smbus
sudo apt-get install i2c-tools

Finally, you may need to edit your blacklist file, if you have one. (Remember, if it exists, you can
find it in /etc/modprobe.d/raspi-blacklist.conf.) If you have one, comment out the following two
lines by adding a hashtag to the beginning of each line:

#blacklist spi-bcm2708
#blacklist i2c-bcm2708

Save the file, then reboot your Pi with the following, and you should be ready to use the I2C
protocol with your sensors:

sudo shutdown -r now

To see if everything installed correctly, try running the i2cdetect utility:

sudo i2cdetect -y 1

It should bring up the screen in Figure 10-6.

Obviously, no devices are showing up in the illustration because we haven’t plugged any in yet,
but the tool is working. If by chance you have devices plugged in but they don’t show up, or if
the tool fails to start at all, instead try typing the following:

sudo i2cdetect -y 0

The 1 or 0 flag depends on the Pi revision you happen to have. If you have a Revision 1 board,
you’ll be using the 0 flag; Revision 2 owners will need to use the 1.

117Chapter 10

I2C Sensors

Figure 10-6. The i2cdetect utility

To test the i2cdetect utility, connect an I2C sensor to your Pi, such as the digital compass
—the HMC5883L. Connect the compass’s Vcc and GND pins to the Pi’s 2 and 6 pins, and
then the SDA and SCL pins to pins 3 and 5, respectively. When you start the i2cdetect
utility, you should now see the results in Figure 10-7, which shows the compass’s (precon-
figured) 12C address of 0x1e.

Figure 10-7. i2cdetect showing connected HMC5883L

118 Make a Raspberry Pi–Controlled Robot

I2C Sensors

HMC5883L Compass
You have it connected now, so let’s configure the compass. The following script sets up the I2C
bus, and after reading the values from the compass, performs a little bit of math wizardry to
translate its readings into a format that you and I are used to:

 import smbus
 import math

 bus = smbus.SMBus(0)
 address = 0x1e

 def read_byte(adr):
 return bus.read_byte_data(address, adr)

 def read_word(adr):
 high = bus.read_byte_data(address, adr)
 low = bus.read_byte_data(address, adr+1)
 val = (high << 8) + low
 return val

 def read_word_2c(adr):
 val = read_word(adr)
 if val >= 0x8000:
 return -((65535 - val) + 1)
 else:
 return val

 def write_byte(adr, value):
 bus.write_byte_data(address, adr, value)

 write_byte (0, 0b01110000)
 write_byte (1, 0b00100000)
 write_byte (2, 0b00000000)

 scale = 0.92
 x_offset = -39
 y_offset = -100

 x_out = (read_word_2c(3) - x_offset) * scale
 y_out = (read_word_2c(7) - y_offset) * scale

 bearing = math.atan2(y_out, x_out)
 if bearing < 0:
 bearing += 2 * math.pi
 print "Bearing: ", math.degrees(bearing)

Here, after importing the necessary libraries (smbus and math), we define functions
(read_byte(), read_word(), read_word2c(), and write_byte()) to read from and write values
(either single bytes or 8-bit values) to the sensor’s I2C address. The three write_byte() lines
write the values 112, 32, and 0 to the sensor to configure it for reading. Those values are normally
listed in a sensor’s datasheet.

119Chapter 10

I2C Sensors

The script then reads the x-axis and y-axis values from the sensor and uses the math library’s
atan2() (inverse tangent) function to find the sensor’s bearing. The x_offset and y_off
set values are subject to change and are dependent on your current location on the Earth’s
surface; the easiest way to determine what they should be is to run the script with a working
compass nearby to compare values. When you run the script, remember that the side of
the chip with the soldered headers is the direction in which the board is “pointed.” Compare
the readings and tweak the values of the x_offset and y_offset values until the readings
from the two compasses match. Now you can determine which direction your rover is
headed. You shouldn’t experience any interference from your Pi or from the motors on
your magnetic sensor; the fields generated by those devices are too weak to make a dif-
ference in the sensor’s readings.

As always, save this script in your rover’s folder for addition to your main program.

BMP180P Barometer
The BMP180P barometer/pressure chip is another sensor that runs on the I2C protocol.
Again, connect the SDA and SCL pins to either the Pi’s 3 and 5 pins, or the rails on the
breadboard if you’ve gone that route, and the GND pin to the Pi’s 6 pin. This time, however,
connect the Vcc pin to the Pi’s 1 pin, not the 2 pin. This sensor needs only 3.3V, and powering
it with 3.3V instead of 5V ensures that it will output only 3.3V and not damage the Pi’s
delicate GPIO pins. After you’ve connected everything, run the i2cdetect utility to make
sure that you see the sensor’s address, which should be 0x77.

Like a few of the other sensors, this one needs an external library in order to work, and that
library is available from Adafruit. In your terminal, make sure you’re in the main rover folder
and type the following:

wget http://bit.ly/NJZOTr

Rename the downloaded file with this command and the library is ready to use, as long as
it’s in the same folder as your script:

mv NJZOTr Adafruit_BMP085.py

You’ll also need another script from Adafruit in the same directory, the Adafruit_I2C
library. To get it, in a terminal enter the following:

wget http://bit.ly/1pHgMxF

and then rename it with the following:

mv 1pHgMxF Adafruit_I2C.py

Now you have both necessary libraries. To read from the sensor, create the following script
in your rover folder to convert to Fahrenheit:

 from Adafruit_BMP085 import BMP085
 bmp = BMP085(0x77)
 temp = bmp.readTemperature()
 pressure = bmp.readPressure()
 altitude = bmp.readAltitude()

120 Make a Raspberry Pi–Controlled Robot

I2C Sensors

 print "Temperature: %.2f C" %temp
 print "Pressure: %.2f hPa" %(pressure/100.0)
 print "Altitude: %.2f" %altitude

The Adafruit library is nice because it handles all the intricacies of communicating over the I2C
bus for us; all we have to do is call the functions readTemperature(), readPressure(), and
readAltitude(). If you’re not in one of the 99% of countries using Celsius for temperature, just
add the following line:

temp = temp*9/5 + 32

Nintendo Wii Devices
You can also use the I2C library to communicate with other devices, of course; it’s not unheard
of to connect a Nintendo Wii nunchuk to the Pi with a special adapter, called a Wiichuck adapter
(Figure 10-8).

Figure 10-8. Wiichuck adapter

You can then read the values from the nunchuk’s joystick, buttons, and onboard accelerometer
to control things like motors, cameras, and other parts of the robot.

121Chapter 10

I2C Sensors

Camera
The last thing we need to go over is the Pi’s camera; it is technically a sensor, and you can
use it to take pictures of your rover’s surroundings and even stream a live feed over the
local network and navigate that way.

Hooking up the camera is fairly straightforward. If you’re sticking with the flex cable that
came with the camera, you’re almost finished already. Insert the flex cable into the small
connector between the Ethernet port and the HDMI connector. To insert it, you may have
to pull up slightly on the tabs on both sides of the connector. Insert the cable with the
silver connections facing the HDMI port, as far as it will go, and then press down on the
edges of the connector to lock it into place.

If you’re using an extension cable such as the one from BitWizard, follow their instructions
as to hooking up the flex and the ribbon cables. When you’re finished connecting the
camera, enable it in the raspi-config file if you haven’t done so already by typing the fol-
lowing and enabling it there (option 5):

sudo raspi-config

Once enabled, to test the camera, open a terminal window and type:

raspistill -o image.jpg

After a short pause, image.jpg should appear in the current directory.

Raspistill is an amazing program. Technically, all it does is take still pictures with the Rasp-
berry Pi camera module. In reality, it has a whole series of options, including the ability to
take time-lapse sequences, to adjust image resolution and image size, and so forth. Play
around with the flags listed on the Raspberry Pi site’s camera documentation page.

To use the Python library now available for the camera (Python 2.7 and above), enter the
following in your terminal to install it:

sudo apt-get update
sudo apt-get install python-picamera

You’re now ready to use the camera. If you plan to place the camera in the robotic arm
attachment, refer back to Chapter 7 as to how to mount it there. Then you can use it with
the Python library with a script such as this:

 import picamera
 camera = picamera.PiCamera()
 camera.capture('image.jpg')

This will simply capture image.jpg and store it in the local directory. One nice thing about
the Python library as opposed to the command-line interface is that the default image size
for the Python module is much smaller than the command-line default.

If you would like to record video with the camera, it’s as simple as this:

 import picamera
 import time

122 Make a Raspberry Pi–Controlled Robot

I2C Sensors

http://bit.ly/1xqiybL
http://bit.ly/1CLWpWL

 camera = picamera.PiCamera()
 camera.start_recording('video.h264')
 time.sleep(5)
 camera.stop_recording()

This will record for 5 seconds and then stop.

Live camera feed
All of these are nice if you simply want to travel to a point and then take pictures or video after
you arrive. But what if you would like to navigate using the feed from the camera? This, too, is
possible, by streaming the video feed from the camera over the local ad hoc network you’ve
set up and playing the stream on the computer you’re using to remotely control the Pi. To do
this, you’ll need the VLC media player installed on both the Pi and your control computer. On
the Pi, it’s a simple:

sudo apt-get install vlc

to install it; on your controlling computer, VLC is available for Linux, Windows, and OS X.

The stream will be broadcast using Real Time Streaming Protocol (RTSP). This protocol is a
common network video-streaming interface, and VLC is easy to set up to both transmit and
receive and decode it. Once VLC is installed on the Pi, start the stream with the following:

raspivid -o - -t 0 -n -w 600 -h 400 -fps 12 |
cvlc -vvv stream:///dev/stdin --sout
'#rtp{sdp=rtsp://:8554/}' :demux=h264

Then move to your control computer, open VLC, and open a network stream from rtsp://<Your
Pi IP>:8554. It’s a small, 600 x 400 window, so not too much bandwidth should be needed.
There’s also likely to be a delay of several seconds, so this may not be an optimal way of con-
trolling your rover in a situation where fast response times are important.

You may run into the problem of your Pi shutting down as soon as you issue the
streaming command shown here. It seems that the command draws a lot of
power—sometimes, enough to shut everything off. If that does happen, try a
different power supply (if you’re powering the Pi from a USB wall charger) or a
different battery pack (if you’re using batteries such as the Li-Poly battery pack).
Experimentation is always helpful; I had success simply by using a shorter USB
power cable at one point.

If you can’t get it to work, your particular Pi/power/VLC combination may just be
too ill-suited for live streaming video. In that case, you’ll just have to remain in
view of your rover to control it—which is not the end of the world.

That by no means covers all of the sensors that are available for your rover, but it should give
you a pretty good start. Many sensors are just switches at heart, and if not, there may be a library
available to read from them. Or they may follow the I2C protocol, making them easy to add to

123Chapter 10

I2C Sensors

your rover’s sensor network. In the next chapter, we’ll cover putting all of these snippets
of code together and controlling (and reading from) the rover by using one program.

124 Make a Raspberry Pi–Controlled Robot

I2C Sensors

At this point in the build, you should have at least two things: a working rover, and a directory
on the Pi full of small Python scripts that do all kinds of neat things separately, but don’t work
together very well. As the last part of this build, we’ll have to combine all of the scripts into one
large working program that does everything we expect it to.

When setting up this program,we need to ask ourselves a few questions. First, how many sensors
are we going to be using? There are a lot of different ones, and you have only a limited number
of GPIO pins available (unless they’re all on the I2C bus). Also, some of the sensors don’t play
well together in the same program. For instance, the SHT15 temperature sensor works great
when you test it by itself. But when you try to use another GPIO pin as an output (such as for a
motor), the sht1x library re-declares the GPIO pin setup, which negates all the setup you do in
the main script. Not to worry, of course—we can use the getTemperature() function from the
BMP180 sensor to get the ambient temperature.

So once you’ve figured out what sensors you’re going to use, and where to place them, and
how to wire them, all that remains is to write the final program. Simple, right? Actually, as I said
at the beginning of the book, if you’ve been following along, most of this work is already done
—all you’re doing is putting the pieces together.

I designed the program to be interactive. There’s no robotic autonomy in this program, as such
a program would probably end up being thousands of lines of code. Rather, the program dis-
plays all pertinent sensor data (temperature, pressure, bearing, location, etc.) and then asks for
input from the user as to what to do next. If you tell the rover to move forward, the program
calls the moveForward() function. Then the sensors are polled, the sensor data is displayed, and
the user is prompted again. The moveForward() function continues to execute until the user
stops it. This allows the rover to continue to move until you tell it otherwise, rather than moving
forward a few feet and then stopping and waiting for further instructions.

If you choose to build on this script and pursue autonomous behavior, your best bet is probably
to go through a continuous loop, polling the sensors for data one by one. You can then put

125

Final Code and
Conclusion 11

interrupts related to each sensor that tell the rover what to do if any of the sensors read a
particular value.

Perhaps the most obvious use of this algorithm is to make the rover follow a preprogram-
med route using GPS waypoints. By calling gpsd.fix.latitude and gpsd.fix.longitude,
you can determine whether the rover should move forward, turn left, or turn right. When
those values match your first set of coordinates, you can execute a preplanned action and
then continue. To give you an example, using the GPS sensor only:

 # Destination: 36.21 degrees N, 116.53 degrees W.
 # When we reach that point, turn due south and
 # continue driving
 # Assume that we're approaching from the West

 while True:
 curLat = gpsd.fix.latitude
 curLon = gpsd.fix.longitude
 # Longitude degrees W are delineated with a
 # negative sign in NMEA strings
 if (curLat == 36.21) and (curLon == -116.53):
 allStop()
 spinLeft()
 time.sleep(1)
 allStop()
 takePicture()
 elif curLat < 36.21:
 # You've gone too far,
 # back up
 moveBackward()
 continue
 elif curLat > 36.21:
 # You're not there yet
 # Keep going
 moveForward()
 continue

This is by no means a complete section of code, has not been tested, and barely covers any
of the possible actions based on the rover’s location, but it should give you some ideas,
both of what is possible with a rover and what is required to achieve it. Programming an
“intelligent” rover or robot is no small task, as you need to try to plan for all possible
situations and then program responses to those situations—at least until artificial intelli-
gence makes some serious strides forward. That, in fact, is part of the fun of robotic pro-
gramming: not only trying to anticipate all possible situations, but also trying to program
behaviors and algorithms so that the rover can react to those situations, as well as those
that you (inevitably) didn’t think of or plan for. This makes what I call a robust program;
should something unexpected arise, the rover has a default behavior that it can fall back
on that will always work.

In the meantime, you’ll be driving your rover with your laptop, calling functions by pressing
keys. I’ve tried to keep to the traditional gaming keymap: W to move forward, Z to move

126 Make a Raspberry Pi–Controlled Robot

Final Code and Conclusion

backward, A and D to move left and right, respectively, and S to stop. In addition, there are keys
to raise the arm, lower the arm, and take a picture. In each case, the program asks for user input,
calls the required function, waits a second, polls the sensors, clears the screen, and displays the
sensor readings and the input prompt again. Before everything else starts, the program asks
the user if a GPS is connected; if you don’t have one connected, the program skips the location
query. This is done because if the program tries to query a nonexistent GPS module, it will break.

 # This script runs the rover,
 # displaying readings from the sensors
 # every time it gets input
 # from the user

 import time
 import os
 import RPi.GPIO as GPIO
 import subprocess
 from sht1x.Sht1x import Sht1x as SHT1x
 import smbus
 import math
 from gps import *
 import threading
 from Adafruit_BMP085 import BMP085

 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BOARD)
 GPIO.setwarnings (False)

 # Motor setup
 # 19 = IN1
 # 21 = ENA
 # 23 = IN2
 GPIO.setup(19, GPIO.OUT)
 GPIO.setup(21, GPIO.OUT)
 GPIO.setup(23, GPIO.OUT)
 # 22 = IN3
 # 24 = ENB
 # 26 = IN4
 GPIO.setup(22, GPIO.OUT)
 GPIO.setup(24, GPIO.OUT)
 GPIO.setup(26, GPIO.OUT)

 def moveForward():
 # r forward
 GPIO.output(21, 1)
 GPIO.output(19, 0)
 GPIO.output(23, 1)
 # l forward
 GPIO.output(24, 1)
 GPIO.output(22, 0)
 GPIO.output(26, 1)

 def moveBackward():
 # r backward

127Chapter 11

Final Code and Conclusion

 GPIO.output(21, 1)
 GPIO.output(19, 1)
 GPIO.output(23, 0)
 # l backward
 GPIO.output(24, 1)
 GPIO.output(22, 1)
 GPIO.output(26, 0)

 def allStop():
 GPIO.output(21, 0)
 GPIO.output(24, 0)

 def spinRight():
 # leftforward, rightbackward
 GPIO.output(24, 1)
 GPIO.output(22, 0)
 GPIO.output(26, 1)
 GPIO.output(21, 1)
 GPIO.output(19, 1)
 GPIO.output(23, 0)

 def spinLeft():
 # rightforward, leftbackward
 GPIO.output(21, 1)
 GPIO.output(19, 0)
 GPIO.output(23, 1)
 GPIO.output(24, 1)
 GPIO.output(22, 1)
 GPIO.output(26, 0)

 # GPS setup
 gpsd = None
 class GpsPoller(threading.Thread):
 def __init__(self):
 threading.Thread.__init__(self)
 global gpsd
 gpsd = gps(mode=WATCH_ENABLE)
 self.current_value=None
 self.running = True
 def run(self):
 global gpsd
 while gpsp.running:
 gpsd.next()

 # Compass setup
 bus = smbus.SMBus(0)
 compAddress = 0x1e
 def read_byte(adr):
 return bus.read_byte_data(compAddress, adr)

 def read_word(adr):
 high = bus.read_byte_data(compAddress, adr)
 low = bus.read_byte_data(compAddress, adr+1)
 val = (high << 8) + low

128 Make a Raspberry Pi–Controlled Robot

Final Code and Conclusion

 return val

 def read_word_2c(adr):
 val = read_word(adr)
 if val >= 0x8000:
 return -((65535 - val) + 1)
 else:
 return val

 def write_byte(adr, value):
 bus.write_byte_data(compAddress, adr, value)

 def getBearing():
 write_byte(0, 0b01110000)
 write_byte(1, 0b00100000)
 write_byte(2, 0b00000000)
 scale = 0.92
 x_offset = -39
 y_offset = -100
 x_out = (read_word_2c(3) - x_offset) * scale
 y_out = (read_word_2c(7) - y_offset) * scale
 bearing = math.atan2(y_out, x_out)
 if bearing < 0:
 bearing + 2 * math.pi
 return str(math.degrees(bearing))

 # Robotic arm servo setup

 def liftArm():
 for i in range(50, 90):
 subprocess.call("echo 2=" + str(i) + "/dev/servoblaster", shell=True)
 time.sleep(0.5)

 def lowerArm():
 for i in reversed(range(50, 90)):
 subprocess.call("echo 2=" + str(i) + "/dev/servoblaster", shell=True)
 time.sleep(0.5)

 # Rangefinder setup
 GPIO.setup(15, GPIO.OUT)
 GPIO.setup(13, GPIO.IN)

 def getRange():
 time.sleep(0.3)
 GPIO.output(15, 1)
 time.sleep(0.00001)
 GPIO.output(15, 0)
 while GPIO.input(13) == 0:
 signaloff = time.time()
 while GPIO.input(13) == 1:
 signalon = time.time()
 timepassed = signalon - signaloff
 distance = timepassed * 17000

129Chapter 11

Final Code and Conclusion

 return str(distance)

 # Pressure and temperature
 bmp = BMP085(0x77)
 def getTemperature():
 return str(bmp.readTemperature())

 def getPressure():
 return str(bmp.readPressure()/1000)

 if __name__ == '__main__':
 gpsQuery = raw_input("Do you have a GPS connected? (y/n) ")
 if gpsQuery == 'y':
 gpsp = GpsPoller()
 try:
 gpsp.start()
 while True:

 # Get command from user
 os.system("clear")
 print "Range to target: " + getRange()
 print "Temp: " + getTemperature() + "C"
 print "Pressure: " + getPressure() + "kPa"
 print "Location: " + str(gpsd.fix.longitude)
 + ", " + str(gpsd.fix.latitude)
 print "Bearing: " + getBearing() + " degrees"
 print "W = forward"
 print "Z = backward"
 print "A = left"
 print "D = right"
 print "S = stop"
 print "O = raise arm"
 print "P = lower arm"
 print "I = take picture"

 command = raw_input("Enter command(Q to quit): ")
 if command == "w":
 moveForward()
 time.sleep(0.5)
 continue
 elif command == "z":
 moveBackward()
 time.sleep(0.5)
 continue
 elif command == "a":
 spinLeft()
 time.sleep(0.5)
 continue
 elif command == "d":
 spinRight()
 time.sleep(0.5)
 continue
 elif command == "s":
 allStop()

130 Make a Raspberry Pi–Controlled Robot

Final Code and Conclusion

 time.sleep(0.5)
 continue
 elif command == "o":
 liftArm()
 time.sleep(0.5)
 continue
 elif command == "p":
 lowerArm()
 time.sleep(0.5)
 continue
 elif command == "i":
 subprocess.call("raspistill -o image.jpg",
 shell=True)
 time.sleep(0.5)
 continue
 elif command == "q":
 gpsp.running=False
 gpsp.join()
 GPIO.cleanup()
 break
 else:
 print "Command not recognized. Try again."
 time.sleep(1)
 continue
 except (KeyboardInterrupt, SystemExit):
 gpsp.running = False
 gpsp.join()
 GPIO.cleanup()
 else:
 try:
 while True:
 # Get command from user
 os.system("clear")
 print "Range to target: " + getRange()
 print "Temp: " + getTemperature() + "C"
 print "Pressure: " + getPressure() + "kPa"
 print "Bearing: " + getBearing() + " degrees"
 print "W = forward"
 print "Z = backward"
 print "A = left"
 print "D = right"
 print "S = stop"
 print "O = raise arm"
 print "P = lower arm"
 print "I = take picture"

 command = raw_input("Enter command
 (Q to quit): ")
 if command == "w":
 moveForward()
 time.sleep(0.5)
 continue
 elif command == "z":
 moveBackward()

131Chapter 11

Final Code and Conclusion

 time.sleep(0.5)
 continue
 elif command == "a":
 spinLeft()
 time.sleep(0.5)
 continue
 elif command == "d":
 spinRight()
 time.sleep(0.5)
 continue
 elif command == "s":
 allStop()
 time.sleep(0.5)
 continue
 elif command == "o":
 liftArm()
 time.sleep(0.5)
 continue
 elif command == "p":
 lowerArm()
 time.sleep(0.5)
 continue
 elif command == "i":
 subprocess.call("raspistill -o
 image.jpg",
 shell=True)
 time.sleep(0.5)
 continue
 elif command == "q":
 gpsp.running=False
 gpsp.join()
 GPIO.cleanup()
 break
 else:
 print "Command not recognized.
 Try again."
 time.sleep(1)
 continue
 except (KeyboardInterrupt, SystemExit):
 GPIO.cleanup()

Now, keep in mind that this is only a starter script, and it doesn’t use all of the sensors we
went over in Chapter 10. Because your Pi has a limited number of GPIO pins, you may have
to play around with power rails on your breadboard, adding and subtracting I2C devices,
and other ways of managing the sensors on your rover. When it’s running, you’ll see a
command window like that in Figure 11-1.

132 Make a Raspberry Pi–Controlled Robot

Final Code and Conclusion

Figure 11-1. Rover command program window

You may even decide to design a GUI for your rover interface. If you decide to do that, I suggest
researching Python’s Tkinter library. It’s functional more than fashionable, but its small learning
curve makes it possible to design fully working user interfaces for your Python scripts.

Whatever you decide to do with your rover, above all have fun with it. Once you’ve solved the
problems inherent in designing a rover from scratch, you can modify and tweak it to your heart’s
content.

I look forward to seeing what you come up with!

133Chapter 11

Final Code and Conclusion

https://wiki.python.org/moin/TkInter

You’ve probably noticed that after you get the Pi up and running, working with it is pretty
straightforward. You have root access (using sudo) to any files you need to change, such as /etc/
network/interfaces, or the /etc/rc.local file. You can plug in your keyboard, mouse, and monitor,
and work with it as a standard desktop machine, or (as I prefer) you can just hook it to your
network and remotely log into it via SSH (or VNC, if you need a graphic desktop environment).
With the wireless working, you can put the Pi in your rover and do all of your programming
work without taking it out of the robot.

But what about setting it up in the first place? Even if you bought your Pi with the now-available
NOOBS-preloaded SD card, you still need to install Raspbian and set it up to be easily accessed
remotely. If you just bought yourself a bare-bones setup and need to get NOOBS, you may be
a little confused. Sure, there are instructions on the raspberrypi.org website, but who reads
instructions? And if you’re new to this whole Raspberry Pi thing, you may need some help.

That is what this appendix is for. (The word appendix comes from the Latin word appendere,
meaning “to hang upon,” or “to explain OS installation.”) Let’s quickly go through the process
of downloading NOOBS, formatting your SD card, installing Raspbian, and working through
the raspi-config tool. If you bought a preformatted card (always a good idea, as it’s only about
$7, and all proceeds go to the nonprofit Raspberry Pi Foundation), you can skip ahead to the
installation section.

And why download NOOBS, you ask? NOOBS is handy because it contains all the files you need
in one easy download. In fact, it contains the installation files for several operating systems,
including Raspbian and Kodi Entertainment Center, so should you want to experiment with
other OSs on your Pi, by downloading NOOBS you have access to a virtual cornucopia of op-
erating system goodness.

135

Setting Up the Pi A

Download NOOBS

NOOBS, which stands for New Out Of Box Software, is available for free from http://www.rasp
berrypi.org/downloads. The version as of this writing is 1.3.5. On that page, click the ZIP file
to begin the download and get a cup of coffee (or go to bed—it’s a hefty 1.3GB download).

After the ZIP file is downloaded, extract the files. You should end up with a folder containing
files similar to what you see in Figure A-1.

Figure A-1. Contents of the NOOBS folder

Set that folder aside for a moment. Before we do anything with it, we need to get the SD
card ready.

Download the SD Card Formatting Tool

Although you can probably just drag and drop the NOOBS files onto a blank SD card and
expect it to work, you may not want to take that chance. Depending on your computer’s
operating system and the format currently on the card (which often depends on the card’s
manufacturer), the dragged-and-dropped files may or may not install correctly onto the
card. I have had luck with a Mac and a PNY card, but the same card did not accept the files
when I attempted to drag and drop them from a Windows installation. To avoid any guess-
work, I highly recommend getting the card-formatting tool from the SD Association’s
website.

136 Make a Raspberry Pi–Controlled Robot

Download NOOBS

http://www.raspberrypi.org/downloads
http://www.raspberrypi.org/downloads

Point your browser to http://www.sdcard.org/downloads/formatter_4/. On the left side of the
page, you’ll see your download choices (Figure A-2). Select your operating system, agree to the
terms, and download the tool. Unlike the NOOBS file, it’s quite small.

Figure A-2. The NOOBS download

When it is downloaded, open up the file and follow the instructions to install the SD card for-
matting tool on your machine.

Format and Fill Your Card

While we’re on the subject of cards, which one are you using? You’ll need at least 8GB for your
install. (The raspberrypi.org site says 4GB, but my experience is that 4GB isn’t big enough.) Go
larger if you like; there’s no upper limit, as far as I know. I tend to go with 16GB.

Put the card in your computer’s card slot. Open the formatting tool you installed earlier and
follow the instructions to format the card.

Make sure you choose the correct drive to format. The tool will erase whatever
disk you point it at! That includes your hard drive. Be careful!

When the tool is done and the card is ready, just copy the files from the NOOBS_v1_3_5 folder
onto the card. That’s it!

137Appendix A

Format and Fill Your Card

http://www.sdcard.org/downloads/formatter_4/

The raspi-config Tool

When the Pi starts up for the first time, you’ll see a splash screen, giving you the option of
which OS to install. Choose Raspbian (the first option) and click Install. The NOOBS tool
will expand the file system to fill your SD card and then do a clean install of Raspbian. Feel
free to watch for a while, as the Raspberry Pi Foundation has included some helpful reading
material to watch while you wait. And you will wait: especially if you have a high-capacity
SD card, the installation may take up to an hour.

When the install is done, you’ll reboot the Pi, and then will be greeted with the raspi-
config tool (Figure A-3).

Figure A-3. The raspi-config tool

Getting around the tool is easy: use the up and down arrows to choose your line item, and
then the right arrow and Enter key to select.

You used the NOOBS tool, so you can disregard the first item, Expand Filesystem, because
NOOBS automatically expands the installation to fill the SD card. The second menu item
lets you change the default username and password from pi and raspberry, respectively,
to something more appropriate, should you so desire. It’s probably unnecessary, unless
you plan on exposing your Pi to the outside world via an unprotected network.

The third option allows you to choose whether you want to boot to a desktop environment,
a command line, or the Scratch programming language IDE. If you choose to boot to a
command line, you can always start a desktop by typing startx at the prompt.

The fourth option, Internationalisation Options, is important if you’re not using the Pi in
the United Kingdom. Work your way through the menus, choosing your locale, time zone,
and the sort of keyboard you have. The locale menu is a little different to get around in,
and can be a bit confusing. First of all, it’s comprehensive, meaning that a lot of regions are
listed, from Antigua to Zimbabwe. To choose your locale, move up and down with the
arrow keys. The locale(s) currently selected will have an asterisk in the brackets (Figure A-4).
To clear or add an asterisk, press the space bar while you have that line selected. According

138 Make a Raspberry Pi–Controlled Robot

The raspi-config Tool

to the configuration instructions on the screen, when faced with a choice, choose the UTF-8
locale for your country.

Figure A-4. en_US locale selected in raspi-config

When you’re finished, press the Tab key to get to the <Ok> option, and press Enter. Follow that
up by choosing your time zone (your system clock will be updated via a network time server if
you have your Pi connected to the Internet while you run the tool) and your keyboard layout.
In general, unless you have a super-duper high-tech keyboard, you can probably just agree with
the defaults presented to you in the keyboard selection screens and press <Ok>. You’ll know
you got it right if, after you’re finished, pressing Shift+2 gives you the result you expect—either
an at sign (@) or a double quote (“).

Enable Camera, the fifth option, does just what it says—configuring the Pi to work with the
camera board. If you don’t enable it, your Pi won’t be able to work with the camera, and if you’re
planning on putting the IR camera in the robotic arm as per the rover design, you’ll need camera
support. Even if you’re not going to use the Pi camera, I recommend enabling it. It doesn’t cost
you anything.

Option six, Add to Rastrack, simply adds your Pi to the global database/map of Raspberry Pis.
Feel free to enable it if you’re not feeling particularly paranoid today.

The seventh option, Overclock, gives you the ability to upgrade your 700MHz chip all the way
to a screaming-fast 1GHz. This is totally up to you; I find it’s not really necessary unless you’re
planning on doing a lot of intensive computing or working with video. It can make your Pi run
a little hot, and can cause system instability. Experiment if you feel you must.

Option eight, Advanced Options, is important if only because of its fourth submenu item, SSH
(Figure A-5). It’s important that you enable the SSH server on your Pi, so you can log in remotely
and work on it while it’s installed in your rover or other project. Experiment with the others as
you like.

139Appendix A

The raspi-config Tool

Figure A-5. Enabling the SSH tool

When you’re finished playing with the options in the tool, select Finish and reboot your Pi
if necessary.

The final part of the setup process is to update your Pi. Updates are continually being
released, and it’s quite likely that one or more of the packages on your Pi have been updated
since the NOOBS tool was released. Open a terminal, and at the prompt type sudo apt-
get update and sudo apt-get upgrade. That will make sure all of your installed software
is cutting-edge. Depending on the number of updates to the software you have installed,
this update and upgrade process can take quite a while—not quite as long as the initial
installation, but still long enough to go enjoy a nice cup of tea.

That is a short-and-sweet guide to getting your Pi ready to program and build. As you
progress through the build, you may find yourself downloading other software packages
as well; it’s not uncommon to end up with an SD card that’s completely tailored to one
project in terms of installed software and written programs and scripts. This is another
advantage to the Pi’s hard drive system: you can set that SD card aside, buy another one
for under $30, and start fresh on the next project. It’s not like buying another 1TB hard
drive for your laptop every time you start a new build.

Now that you’re up and running, you may want to peek at Appendix B if you need a refresher
on (or an introduction to) the Python scripting language.

140 Make a Raspberry Pi–Controlled Robot

The raspi-config Tool

As you’ve probably noticed from flipping through the book, all of my scripts for the robot are
written in Python. There are some good reasons for this. If you are already a skilled Python
aficionado, you can probably skip this portion of the book. On the other hand, if you need a
refresher, or if Python is completely new to you, read on for a quick-and-dirty introduction to
this powerful language.

Python on the Pi: A History in Four Paragraphs

Python was born in 1989 to Guido van Rossum, who had a crazy idea that programming should
be accessible to everybody, not just geeks with broken glasses and pocket protectors. He was
working with a language called ABC, and wanted a language that would fix some of its problems
and add new features. The result, created over a Christmas holiday, was Python. He continues
to have a hand in the development of the language, and has been gifted by the Python com-
munity with the title Benevolent Dictator for Life, or BDFL.

Contrary to what some believe, Python is not named after the snake. Rather, it is named for the
British comedy troupe Monty Python, of whom van Rossum is a huge fan. (If you have never
seen a Monty Python sketch, you should go to YouTube right now and watch a few. I recommend
the Dead Parrot sketch, the Ministry of Silly Walks, and the Argument Clinic.) No, you don’t need
to be a fan to use the language, but it helps you get some of the in-jokes.

Because of its Monty Python origins, you’ll find references to the comedy scattered throughout
Python. Instead of the common foo and bar example functions and variable names, you’ll find
spam and eggs. “Knights of Ni” references abound in tutorials and books. Even the integrated
development environment (IDE) called IDLE is named after one of the members (see if you can
guess which one).

141

Intro to Python B

As to Python on the Pi, the Pi’s creators (Eben Upton, Rob Mullins, Jack Lang, and Alan
Mycroft) wanted a small, cheap computer that anybody could learn to program on. Know-
ing how simple and how powerful Python was, they included it as the default language
on the Pi. Yes, you can program its ARM processor in C or even (if you’re particularly mas-
ochistic) assembly language, but after learning about Python, why would you want to?

Using IDLE

Perhaps the best way to get an introduction to the language is by using its real-time de-
velopment environment, IDLE. On your Raspberry Pi desktop, doubleclick the IDLE icon
(Figure B-1).

Figure B-1. The IDLE icon

This opens an interactive screen, as you see in Figure B-2.

Let’s start with the first program any programmer ever learns. In your IDLE prompt, type
the following:

print "Hello, world!"

You should be rewarded with:

'Hello, world!'

If you’ve programmed in different languages, you should immediately notice a difference.
To print “Hello, world!” in C++, you’d need to type the following:

 # include <iostream>
 using namespace std;
 int main()
 {
 cout << "Hello, world!" << endl;
 return 0;
 }

142 Make a Raspberry Pi–Controlled Robot

Using IDLE

Figure B-2. The IDLE environment

Python takes only one line to do the same thing. There’s also a noticeable lack of semicolons,
and opening and closing braces. Python uses indentations and blank space to delineate blocks
of code. If you need to block out an if statement, for example, you end the statement with a
colon (:), and then the conditional statements are all indented. When the conditional state-
ments end, the indentation ends.

Lines don’t end with semicolons; rather, when a line is over, it’s just over. So to illustrate an if
block, for example:

if x < y:
 print "x is less than y"
 print "This block of code is now over"

print "This is a new code section."

This has the effect of making Python code much easier to read, and much easier to debug.

143Appendix B

Using IDLE

As you progress in your programming skills, get in the excellent habit of
commenting your code; it makes it easier not only for others to understand
it, but also for you to understand your own code when you go back to it after
several months of doing something completely different.

Now, back in IDLE, type x = 4.

Then type x and press Enter. You’ll be rewarded with the following:

4

You’ve just defined the variable x as an integer: a variable that can hold a small number
(well, a number between 0 and 65533).

Type y = "This is a string". Then type y and press Enter. You’ll be rewarded with the
following:

'This is a string'

You’ve just defined the variable y as a string, a collection of characters.

Now, type x + 4 and press Enter. You’ll see:

8

Type y + " and is long" and press Enter, and you’ll see this:

'This is a string and is long'

To finish off this little lesson, type x +" is not a string" and press Enter. You’ll see your
first error:

TypeError: unsupported operand type(s) for +:'int' and 'str'

This illustrates that Python is a dynamically typed language. You don’t need to tell it that x
is an integer; it knows from your previous use of x. It also knows that y is a string, and that
you can’t add a string and an integer to each other. However, if you were to convert the
integer to a string, with str(x) + " is not a string", the result of that command would
be:

'4 is not a string'

I’ve mentioned integers and strings. There are also long variables, ones that can hold large
numbers (519234L, for example); floats, which can hold what we think of as fractional,
decimal, or real numbers (1.2345); and complex, which can hold what mathematicians also
refer to as imaginary numbers, that contain the square root of –1. This is often written as
i (or in engineering as j). So, for example, 3.14 times the square root of –1 will be displayed
as 3.14j in Python. Python’s standard library allows you to perform all of the standard
operations with those numbers: exponentiation, multiplication, division, addition, and

144 Make a Raspberry Pi–Controlled Robot

Using IDLE

subtraction. If you wish to extend your capabilities, you can import the math module for addi-
tional functions like floor, ceil, and others.

Python’s other main data types are lists, dictionaries, and tuples. Lists, arguably Python’s most
useful data type, are similar to C’s arrays. You declare a list with brackets ([]), and once declared,
you can refer to members of a list by their index, starting with 0. For instance, type the following
into IDLE:

spam = ["eggs", "ham", "bacon", "beans"]

Then type the following:

spam[2]

and you should be rewarded with this:

'bacon'

List members can be almost anything, including other lists; this is how you construct two- and
three-dimensional arrays in Python. Lists are mutable, which means you can change them in
place by assigning a new variable to an index (spam[2] = "seven", for example). This differen-
tiates them from strings, which cannot be changed in place, though you can refer to members
of a string by index.

Dictionaries are similar to lists, but they have a key:value relationship. You can declare a dic-
tionary by using curly braces, and then refer to its members by key. To illustrate:

shrubbery = {"spam":"eggs", "knight":"ni", "black":"knight"}

shrubbery["knight"]

returns:

'ni'

These are the main components of Python, which you’ll be working with as you program.

Python Scripts

Writing Python code in IDLE is all well and good, and is a good way to practice with the language,
but IDLE’s main drawback is that it doesn’t easily let you save your code. When you close it, it’s
all over.

For that reason, you’ll be using a text editor to write all of your programs. There are several
camps among Linux programmers regarding the “proper” text editor to use; the two most
popular are Vim and emacs. If you’re familiar with one of those, great. Vim is preinstalled on the
Pi, and you can install emacs with a simple sudo apt-get install emacs in your terminal. If
you’re not sure, however, or don’t even know what those are, fear not: the Pi also comes prein-
stalled with nano, a full-featured editor that’s intuitive and easy to use. I use emacs, but in this
book I’ll refer to my code in nano for those of you using it.

145Appendix B

Python Scripts

If you are working on your Pi’s desktop environment (either directly or via a VNC connec-
tion), you can also use the Pi’s built-in Leafpad editor (Figure B-3).

Figure B-3. Getting to the Leafpad editor

Unfortunately, although Leafpad will work fine for writing scripts, it can’t be used from the
command line. Because much of your work is done remotely after the Pi is safely ensconced
in the rover, you’ll have to get used to another editor.

To write a script, start your chosen text editor. From the command line, you can type nano
test.py.

When you use a command-line editor like nano or emacs, your development
environment will have syntax clues; that is, important Python words like
import and print and def will be color-coded, which can be helpful when
writing unfamiliar code.

Write a short script, such as this one that will print out all even integers between 1 and
100:

 for x in range(100):
 if x % 2 == 0:
 print x

Now, save it as even.py and close the script. Back in your terminal, make sure you’re in the
same directory as the script you just wrote and type python even.py. You should be greeted
by a long line of even numbers from 0 to 98.

You can make a Python script executable. In other words, clicking the file in your file man-
ager will execute it, rather than opening it in a text editor. To do that, browse to the file’s
location in a terminal. From there, to change test.py to an executable, for instance, type
this:

chmod 755 test.py

146 Make a Raspberry Pi–Controlled Robot

Python Scripts

From then on, if you double-click test.py, you will be greeted with a dialog box like that in
Figure B-4. Depending on the file’s output, you can choose to run it or run it inside a terminal.
This can sometimes be a time-saver if you don’t want to open a terminal to enter python
test.py.

Figure B-4. Execute File dialog box

That is a breakdown of how to write and execute the Python scripts you’ll need to program your
rover. We’ll come across other concepts during the build, such as functions, but I’ll explain those
as they arise. Hopefully, this will give you enough of an introduction to the language to let you
dive in to the build!

147Appendix B

Python Scripts

Symbols
-r flag, 25
./ (run program command), 23
~/ (home directory), 24

A
accelerometers, 49
ACT light, 9
ad hoc networks, 36
analog-to-digital chip, 50
Arduino IDE, 10
ASIMO robot, 2
assembly

body, 59–64
final steps, 82
motors, 64–66
parts required, 39–51
power, 80–82
robotic arm, 74–79
tools required, 51

wheels, 67–74
audio jack, 10
auto fill, 25
Automatic Identification Sys-

tem (AIS), 94
autonomous behavior, 125

B
barometric pressure sensors,

48, 120
batteries, 12, 45, 56
blacklist file, 110
Blu-ray Discs, 13
BMP180P barometer, 120
body

construction of, 59–64
parts required, 39

breadboards, 50
Broadcom PCM2835, 13

C
cameras

attaching to robotic arm, 77
connecting, 122
live feed from, 123

carputers, 19
case sensitivity, 21
cat command, 22
cd command, 21, 22
cell phone chargers, 12, 80
center of gravity (COG), 2
charging, 12, 80
chatter, 113
command-line editors, 146
command-line interface (CLI),

22, 24, 32
compasses, 119
construction (see assembly)
continuous servo motors, 54
cp command, 23

149Index

Index

D
date command, 23
debouncing, 113
degrees of freedom (DOF), 53
design considerations

internal layout, 82
SD card size, 11
sensors, 125
weight, 5

direct drive, 67
directories

changing, 21, 22
creating, 22
deleting, 22
home, 24
listing files in, 22
navigating, 24
printing working, 22

directory paths, 21
dongle, definition of, 28
Dual H-Bridge L298H motor

controller, 51, 86
duty cycles, 55

E
echo (print) command, 23
Edimax EW-7811UN, 29, 50
Ethernet ports, 8, 122
EW-7811UN, 29, 50
exit command, 23
external video devices, 10

F
falling edge, 115
FDX light, 9
feet vs. wheels, 3
files/filesystem

blacklist file, 110
categories of files, 21
commands, 22
interfaces file, 33

KML files, 101
listing files, 22
names, 21
navigating, 24
structure of, 21

floating input, 113

G
GPIO (general purpose input/

output) pins
floating input, 113
for I2C protocol, 117
for motor controller, 85
Model B+ vs. Model B, 14
servo mapping of, 57
ultrasonic sensor and, 108
vs. Arduino IDE, 10

GPIO (general-purpose input/
output) pins
benefits of, 10

GPS (Global Positioning Sys-
tem) units
communicating with GPS

module, 96
history of, 93
photograph of, 93
preliminary setup, 94
selecting, 47, 93
using GPS data, 99

gpsd library, 94
graphics, HDMI port and, 13
grep command, 23

H
Hall effect magnetic sensor,

50, 111
hard drives, 11
HC-SR04 ultrasonic sensor, 108
HDMI ports, 10, 13, 122
headless configuration, 35
headphone plugs, 10
help() function, 16

HMC5883L compass, 119
home directory, 24
Honda ASIMO robot, 2

I
I2C (Inter-Integrated Circuit)

benefits of, 116
protocol for, 117

I2C EEPROM (Electrically Erasa-
ble Programmable Read-
Only Memory), 14

IDLE integrated development
environment, 142

infrared motion sensors, 50,
115

interfaces file, 33
interrupts, 114
IP addresses

setting, 33
terminology, 35

J
jumper wires, 50

K
KML files, 101

L
L298H motor controller, 51, 86
LAN (Ethernet) ports, 8
LAN9512 chip, 8
Leafpad editor, 146
LED (light-emitting diodes),

116
Linux

command-line interface
(CLI), 22

files/filesytem structure, 21
history of, 20

150 Index

navigation in, 24
Pi terminal prompt, 21
wireless operation and, 28

LNK light, 9
ls command, 22
LXTerminal icon, 21

M
magnetic field sensors, 48, 50,

111
man command, 15, 23
maps, 99
master devices, 116
math library, 119
MCP3008 analog-to-digital

chip, 50, 109
mkdir command, 22
Model B+

configuration of, 15
GPIO pins, 14
photograph of, 14
power requirements, 15
USB ports, 15

Models A and B
audio jack, 10
diagram of, 8
ehternet port, 8
GPIO pins, 10
HDMI port, 13
LAN (Ethernet) ports, 8
power port, 12
RCA jack, 10
SD card, 11
status lights, 9
USB ports, 8
vs. Model B+, 14

motion sensors, 50, 115
motor controller

GPIO pins for, 85
photograph of, 86
RPi.GPIO library for, 87
troubleshooting, 87

motors
connecting, 85–88

mounting, 64–66
selecting, 41

(see also servomotors)
movement, 126
mv command, 23

N
National Marine Electronics

Association (NMEA), 94
navigation

of filesystem, 24
with GPS module, 103, 126

network configuration
ad hoc, 36
addresses and terminology,

35
CLI approach, 32
GUI approach, 30
headless, 35
SSID and passwords, 34
static IP address, 33

network id/key, 33
Nintendo Wii devices, 121
nodes, 116
NOOBS (New Out of Box Soft-

ware)
benefits of, 135
downloading, 136
downloading SD card for-

matting tool, 136
formatting/filling SD card,

137
raspi-config tool, 138

O
OK light, 9

P
Parallax RB-Plx-75 motion sen-

sor, 115

parts
body, 39–40
miscellaneous, 50
power train, 41–47
sensors, 47–50

passwords, 34
PCM2835 chip, 13
photoresistors, 49, 109
Pi terminal prompt, 21
power

consumption in Model B+,
15

power ports, 12
requirements for streaming

video, 123
power train

assembly of, 80
parts required, 41

print command, 23
programming

autonomous behavior, 125
displaying sensor data, 125
final steps of, 125
GPS sensor, 126
movement, 126
overview of, 6
sensor planning, 125

pull-ups/pull-downs, 113
PuTTy, 36
pwd command, 22
PWM (pulse-width modula-

tion), 54
PWR light, 9
py-spidev library, 110
Python

as dynamically typed lan-
guage, 144

data types in, 144
history of, 141
IDLE integrated develop-

ment environment, 142
scripts in, 145
syntax in, 143, 146

151Index

R
Ralink chipset, 29
RAM, 11
rangefinders, 49
Raspberry Pi

help resources, 15, 23
logging in, 24
Model B+, 14–15
Models A and B, 8–13
setup of, 135–140
updating/upgrading, 32
voltage limitations, 12, 15
vs. Arduino, 10
vs. other small computers,

19
website forum, 17
wireless setup, 27

Raspberry Pi Stack Exchange,
17

Raspbian operating system
Linux roots of, 19
RPI.GPIO library, 10

raspi-config tool, 138
RB-Plx-75 motion sensor, 115
RCA jacks, 10
reed switches, 113
regular expressions, 23
remote log in, 35
RGB video, 10
rising edge, 115
rm command, 22
rmdir command, 22
robotic arm

assembly, 74–79
controlling, 89–91
photograph of, 89
testing, 89

robots
ASIMO robot, 2
challenges of building, 1
wheeled, 3

root users, 21
rover

assembly of, 59–83

diagram of, 2
driving, 126
GPS system for, 93–103
motors/motor controller

connection, 85–88
overview of, 2
photograph of, 5
photograph of interior, 83
programming overview, 6
robotic arm controller, 89–

91
sensors for, 105–123
servo motor installation, 53

RPi.GPIO library
GPIO control with, 10
motor controller connec-

tion and, 87
PWM control with, 54

rpiSht1x library, 107
run program command (./), 23

S
scripts, 145
SD cards, 9, 11, 136
search program, 23
sensors

BMP180P barometer, 120
cameras, 122
design considerations, 125
displaying data from, 125
HC-SR04 ultrasonic sensor,

108
HMC5883L compass, 119
libraries for, 105
magnetic field sensors, 111
motion sensors, 115
Nintendo Wii devices, 121
obtaining/using code for,

106
photoresistors, 109
reed switches, 113
selecting, 47–50, 105
SHT15 temperature sensor,

107

soldering, 106
ServoBlaster library, 57
servomotors

PWM (pulse-width modula-
tion) control, 54

servo mappings, 57
ServoBlaster library, 57
types of, 54

SHT15 temperature sensor, 47,
107

slaves devices, 116
small-form-factor computers,

19
smbus library, 119
snap-action switches, 113
soldering, 106
SPI bus protocol, 110
SSH (Secure Shell) protocol, 36
Stack Overflow website, 17
standard servo motors, 54
standard tools, 51
status lights, 9
streaming camera feeds, 123
sudo (superuser do), 21–23
superusers, 21
system on a chip (SoC), 13

T
Tab key, 25
temperature sensors, 48, 107
threads, 98
tools, 51
troubleshooting

GPS units, 98
motor controller connec-

tion, 87
robotic arm, 89
status lights, 9
streaming video, 123

152 Index

U
UART (universal asynchronous

receiver/transmitter), 95
ultrasonic rangefinders, 49,

108
updating/upgrading, 32
USB hubs, 8, 15, 29
USB ports, 8, 15

V
video devices, connecting, 10

(see also cameras)

Virtual Network Computing
(VNC), 36

voltage limitations, 12, 15

W
webcams, 49
weight, design considerations

and, 5
WEP authentication, 33
wheels

direct drive approach, 67
front wheels assembly, 72
rear wheels assembly, 68

selecting, 41
size of, 4
vs. feet, 3

WiFi configuration, 30
Wiichuck adapter, 121
wireless adapter

as hoc networks, 36
challenges of, 28
Edimax EW-7811UN, 50
headless configuration, 35
operation through CLI, 32
operation through GUI, 30
Ralink chipset and, 29
static IP address, setting, 33

wpasupplicant message, 33

153Index

About the Author
Wolfram Donat is a graduate of the University of Alaska Anchorage, with a B.S. degree in
computer engineering. Along with an interest in robotics, computer vision, and embedded
systems, his general technological interests and Internet expertise serve to make him an ex-
tremely eclectic programmer. He specializes in C and C++, with additional skills in Java, Python,
and C#/.NET. He is the author of several books and has received funding from NASA for his
work on autonomous submersibles.

Colophon
The cover and body font is Myriad Pro, the heading font is Benton Sans, the sidebar heading
font is Camo Sans, and the code font is Ubunto Mono.

